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 a b s t r a c t

Brain-computer interface (BCI) technologies for video target detection hold great promise across various appli-
cations. However, existing algorithms exhibit limited performance in electroencephalogram (EEG) decoding for 
target detection in low-quality videos. In this paper, to address the limitation, we propose a novel brain-inspired 
deep learning model that incorporates EEG phased encoding and feature-aligned fusion. We first divide the EEG 
segments into pre-phase and post-phase, and extract the corresponding compressed temporal features using a 
novel phased encoder, which is based on multi-scale convolution and attention mechanisms. Subsequently, to 
capture the full-phase brain response, we align and integrate the features from both phases and extract global 
temporal features for classification. The proposed model is grounded in our time- and frequency-domain neural 
analysis, which identifies three critical phases of the brain’s response during low-quality video target detec-
tion: early target recognition, later target spatial tracking, and sustained attention throughout the entire phase. 
EEG datasets, with and without ICA-based artifact removal, were used for cross-subject training and evaluation, 
with the proposed model consistently outperforming baselines. Pseudo-online tests confirmed real-time perfor-
mance, and additional experiments with cognitively distracted participants further demonstrated the model’s 
robustness. This work addresses a significant gap in low-quality video target detection algorithms and advances 
brain-inspired EEG classification by combining principles of neuroscience with artificial intelligence techniques. 
Our code is available at: https://github.com/Wonder-How/PSAFNet.

1.  Introduction

Video target detection has critical applications across various fields, 
such as pedestrian and vehicle detection in autonomous driving (Feng, 
Harakeh, Waslander, & Dietmayer, 2021), defect detection in industrial 
production (Li, Zhang, Wang, Yang, & Deng, 2022a), and security (Yun 
et al., 2022), ecological monitoring (Lyu et al., 2022), and disaster re-
sponse (Alawad, Halima, & Aziz, 2023) using unmanned aerial vehicles 
(UAVs). However, many videos, particularly aerial footage, suffer from 
low quality due to environmental interference, low resolution, and mo-
tion instability (Garvanov, Garvanova, Ivanov, Chikurtev, & Chikurteva, 
2024; Wang et al., 2023). Addressing the challenge of target detection 
in these low-quality videos has become a prominent issue.

The target detection problem in UAV-captured videos is typically 
addressed through computer vision or manual detection methods. How-
ever, two major challenges remain despite advancements in deep
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learning: (1) the aerial perspective, affected by factors such as weather, 
frequently leads to obstructed, fragmented, or small targets, which 
greatly reduces detection accuracy (Fang, Zhang, Zheng, & Chen, 2023); 
and (2) the inherent uncertainty in scenarios like military reconnais-
sance or disaster response often lacks prior information about targets, 
complicating detection and limiting the effectiveness of deep learning 
models in few-shot learning tasks (Liu et al., 2019).

In contrast, the human brain excels at target detection in low-quality 
videos due to its reasoning and adaptability. For challenge (1), the brain 
can infer occluded or blurred targets based on background context and 
prior experiences (Bar, 2007; Mansfield, 2024). For challenge (2), the 
brain’s few-shot learning ability allows it to recognize objects by com-
bining experience with the current task (Pourpanah et al., 2022), elim-
inating the need for extensive pretraining data (Geirhos et al., 2018). 
However, in low-quality scenarios, some targets are difficult to identify 
with the naked eye, and manual reporting introduces delays, making 
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it unsuitable for real-time detection in urgent situations. Furthermore, 
manual reporting is often impractical in real-world multitasking envi-
ronments.

In recent years, the rapid development and application of brain-
computer interface (BCI) technology have provided a promising solu-
tion for real-time automated target detection in complex scenarios. As a 
highly promising next-generation technology, BCI enables interaction 
between the brain and external devices by capturing neural activity 
(Wang et al., 2024, 2022; Xia et al., 2024). Electroencephalography 
(EEG), known for its non-invasiveness, high temporal resolution, and 
affordability, has become widely used in BCI, particularly for target
detection. In cases where potential targets cannot be identified visu-
ally, EEG can capture participants’ unconscious neural responses. Ad-
ditionally, EEG-based target recognition promotes system automation, 
allowing users to focus on other critical tasks simultaneously.

Currently, research on using BCI for low-quality video target detec-
tion remains limited. Most previous EEG-based target detection studies 
have focused on images, primarily following the Rapid Serial Visual Pre-
sentation (RSVP) paradigm. This paradigm presents images to the sub-
ject at a high rate, using the Event-Related Potentials (ERP) elicited by 
the subject to detect the target. Sajda, Gerson, and Parra (2003) were 
the first to apply the RSVP task to high-throughput image target de-
tection. Their experiments showed that EEG classification often outper-
formed the traditional manual button pressing method in detecting tar-
gets. Various EEG decoding algorithms have been employed in RSVP 
tasks, such as Hierarchical Discriminant Component Analysis (Gerson, 
Parra, & Sajda, 2006), Spatial Filtering xDAWN (Rivet, Souloumiac, 
Attina, & Gibert, 2009), and Minimum Distance to Riemannian Mean
(Barachant & Congedo, 2014). However, the classification accuracy of 
these methods still requires improvement.

Deep learning methods have been widely applied in EEG-based tar-
get detection. Lawhern et al. (2018) proposed EEGNet, using depth-
wise separable convolutions to analyze EEG features. Zang, Lin, Liu, 
and Gao (2021) developed PLNet, leveraging the phase-locked charac-
teristics of ERP signals to extract features across different time windows. 
Li, Wei, Qiu, and He (2022b) proposed the Temporal-Frequency Fusion 
Transformer (TFF-Former), a multi-view fusion framework designed to 
capture shared temporal-frequency features across subjects. Yuan et al. 
(2024) employed pyramid squeeze attention for single-trial RSVP task. 
However, most existing BCI target detection algorithms are designed for 

Fig. 1. The brain mechanisms in low-quality video target detection.

image data, with relatively little research focusing on video-based tar-
get detection. Adapting these algorithms to the video target detection 
paradigm presents a significant challenge.

For low-quality video target detection, our previous work utilized 
FRP (Fixation-Related Potential) instead of ERP as the feature segment 
representing target detection (Shi, Bi, Xu, Feleke, & Fei, 2024). This 
approach partially mitigated the asynchrony between target appear-
ance and participant recognition. However, there remains substantial 
research potential in designing algorithms to classify targets based on 
the extracted FRP segments.

Designing algorithmic models inspired by the brain mechanisms 
of video target detection is a promising approach. There have been 
some studies on brain-inspired algorithms for EEG. Inspired by the 
brain’s capability to handle uncertain, noisy, and incomplete informa-
tion, Type-2 fuzzy logic offers a robust framework for EEG signal decod-
ing and cognitive modeling (Nguyen, Khosravi, Creighton, & Nahavandi, 
2015; Rahmani, Mohajelin, Khaleghi, Sheykhivand, & Danishvar, 2024).
Spiking Neural Networks (SNNs) transform EEG signals into spike 
sequences to mimic biological neural processing (Choi, 2024).
Hierarchical Temporal Memory (HTM), inspired by the structure of the 
cerebral cortex, has proven effective in capturing temporal patterns in 
EEG data (Struye & Latré, 2020). Additionally, Hebbian learning, rooted 
in neural self-organization principles, offers further potential for EEG 
signal modeling (Uleru, Hulea, & Manta, 2022). Wendling et al. (2024) 
proposed brain-inspired computational models of the human cortex, 
structured at the cellular, assembly, and whole-brain levels, to support 
the diagnosis of epilepsy.

For visual brain-computer interfaces, Related research has shown 
that the brain processes visual tasks in stages (Song et al., 2021). 
Inspired by this, Lu, Zeng, Zhang, Yan, and Tong (2022b) intro-
duced SAST-GCN, which segments EEG data into three non-overlapping 
phases, extracts features using graph convolution, concatenates them 
temporally, and classifies the results with a convolutional network, 
achieving 90.55% accuracy. However, their method focuses only on 
high-quality videos, differing significantly from the low-quality sce-
narios in practical applications. It does not incorporate complex brain 
processes such as spatial tracking or long-term attention, making 
it unsuitable for low-quality video target detection tasks discussed
above.

Unlike the brief experimental paradigm of RSVP or high-quality 
video tasks, low-quality video target detection involves complex, multi-
phase brain mechanisms. Neural representation analysis categorizes this 
task into three key phases, as illustrated in Fig. 1. The early phase in-
volves the surprise response induced by the appearance of the target and 
the recognition and evaluation of task-related targets. These two neural 
responses correspond to the components P3a and P3b of P300, occurring 
approximately within the early phase after the observer sees the target 
(Polich, 2007). The primary brain region involved is the posterior pari-
etal cortex (PPC), marked in green in the figure. The later phase occurs 
after the target is detected, when the movement of the video target in-
duces a brain response related to visual spatial tracking. This response 
is primarily localized in the visual areas of brain, particularly in V2, 
V3, and the MT area responsible for motion perception of objects (Born 
& Bradley, 2005; Jahn, Wendt, Lotze, Papenmeier, & Huff, 2012; Kaas, 
2003). The response occurs roughly in later phase after target detection, 
as indicated in yellow in the figure. The full phase involves sustained at-
tention and cognitive responses related to target perception throughout 
the entire detection process. This phase is primarily associated with the 
prefrontal cortex (PFC) (Knight, 1994; Martinez-Trujillo, 2022), with 
responses occurring across the 0–1 second time span, marked in purple 
in the figure. These neural responses across phases illustrate how the 
brain coordinates the processing of a target’s appearance, movement, 
and cognitive interpretation during low-quality video target detection.

Inspired by the brain mechanisms involved in low-quality video tar-
get detection, we propose a deep learning model based on a segmented 
temporal encoder and aligned fusion. For the early phase (recognition) 
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Fig. 2. The overall architecture of our brain-inspired video target detection model. MMD: Maximum Mean Discrepancy; BCE: Binary Cross Entropy; LightTCN: Light 
temporal convolutional network. 𝑇  represents the time dimension, and 𝐹  represents the number of feature layers. Processed through the Phased Encoder, the spatial 
channel dimension remains 1. The Phased Encoder is shown in Fig. 3, the Cross-phase Attention is shown in Fig. 4, and the LightTCN is shown in Fig. 5.

and later phase (spatial tracking) of video target detection, a 1-second 
time segment is divided into two overlapping phases: the first 0.75
second and the last 0.75 second. Each phase is processed through a pro-
posed Phased Encoder to extract temporal and spatial features. Next, to 
capture the full phase response of the brain (attention), we align and 
temporally match the two extracted features, followed by concatena-
tion. A temporal network is then used to extract the full-phase temporal 
features, which are employed to determine whether the EEG segment 
corresponds to target detection.

The contribution of this paper is as follows: We propose a novel 
brain-inspired deep learning model that incorporates EEG phased en-
coding and feature-aligned fusion for EEG-based low-quality video tar-
get detection. Through time- and frequency-domain analysis of EEG 
signals, we find that the brain’s response is divided into early target 
recognition, later spatial tracking, and full-phase attention concentra-
tion, corresponding to the model’s early and later phase encoding and 
feature alignment. By using EEG data with and without ICA, we simu-
lated pure brain signals and artifact-mixed signals. Additionally, cog-
nitive distraction experiments were conducted to assess the model’s 
performance in multitasking scenarios. Across various conditions, our 
model consistently outperformed baseline models, which highlights the 
model’s superior accuracy and robust generalization capabilities across 
diverse scenarios and conditions.

2.  Method

In this study, inspired by the brain mechanisms involved in video 
target recognition, we propose a deep learning model with phased align-
ment and fusion. For a 1-second EEG segment, we first divide it into two 
overlapping parts: the first 0.75 second (recognition) and the last 0.75 
second (spatial tracking). Each segment is then processed by a Phased 
Encoder to extract compressed temporal features. The encoder consists 
of four block, which are detailed in Section 2.1. Subsequently, to cap-
ture global features (attention), the temporal features from both phases 
are aligned in high-dimensional space and temporal relations. These 
features are fused through cross-attention mechanisms and a temporal

network, ultimately yielding the classification result, as described in Sec-
tion 2.2. The overall model architecture is illustrated in Fig. 2.

2.1.  Phased encoder

To effectively capture the spatial-temporal characteristics of differ-
ent phased EEG signals, we propose a novel encoder designed to extract 
relevant features from segmented EEG data, as illustrated in Fig. 3. The 
Phased Encoder leverages a multi-scale temporal convolution to process 
temporal dynamics in the EEG signals. It incorporates spatial attention 
mechanisms to focus on critical regions of interest across different brain 
areas, while also optimizing the integration of different feature chan-
nels. Through the combination of these strategies, the Phased Encoder 
efficiently compresses and extracts meaningful spatial and representa-
tions from the EEG data, which are then used for further alignment and 
fusion.

2.1.1.  Multi-scale temporal convolution
The model takes a segmented EEG fragment matrix, 𝑋 ∈ ℝ𝐶×𝑇 , as 

input, where 𝐶 represents the number of channels and 𝑇  denotes the 
number of time points. The EEG is processed in parallel through three 
temporal convolution modules, each with a kernel size of 1 in the spa-
tial domain and temporal window sizes of 32, 64, and 96, respectively, 
with a stride of 1. Each temporal convolution module outputs 𝐹𝐶1∕3
feature channels. To ensure compatibility for concatenation, padding is 
applied along the time dimension, with padding sizes of 16, 32, and 
48 for the three convolutional submodules. Finally, the convolutional 
features from all three scales are concatenated along the feature di-
mension, so the number of feature channels equals 𝐹𝐶1 and obtain 
𝑋𝑐 ∈ ℝ𝐹𝐶1×𝐶×𝑇 . 𝐹𝐶1 is set to 12 in our model. By using multi-scale tem-
poral convolutions, the model can capture features from different time 
windows, including short-term transient signals and long-term rhyth-
mic fluctuations. From a frequency domain perspective, this approach 
enables dynamic extraction of features across different EEG frequency
bands.

Fig. 3. The architecture of the proposed Phased Encoder. MTC: Multi-scale temporal convolution; SAI: Spatial attention and integration; FCA: Feature channel 
attention; TRCI: Temporal reduction and channel integration; GN: Group normalization. The Conv𝑥−𝑦 represents a convolutional layer with a kernal of size (𝑥, 𝑦). 
The additional 𝑆 represents the stride; if not specified, it is assumed to be 1.
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2.1.2.  Spatial attention and integration
This module consists of a spatial attention mechanism, specifically 

a Squeeze-and-Excitation (SE) module, and depthwise spatial convo-
lution. For EEG signals, specific brain regions often show stronger
responses during certain tasks, requiring higher weights for specific 
channels. However, these spatial weights can vary significantly across 
subjects and trials. To address this variability, the SE attention mech-
anism is introduced to adaptively adjust spatial weights (Hu, Shen, & 
Sun, 2018), as detailed below: 
𝑋𝑠𝑎 = 𝜎(𝑊𝑒𝑥𝛿(𝑊𝑠𝑞||

𝐶
𝑐=1𝑎𝑣𝑔(𝑋𝑐 ))) ⋅𝑋𝑐 (1)

First, average pooling (𝑎𝑣𝑔) is applied across the temporal and feature 
channel dimensions, generating a spatial feature vector of length 𝐶. This 
vector is then compressed by multiplying with the weight matrix 𝑊𝑠𝑞 , 
reducing its dimensionality to 2, and activated using the ReLU function, 
denoted as 𝛿. Next, the feature vector is expanded back to 𝐶 dimen-
sions with another weight matrix 𝑊𝑠𝑞 , and the resulting weights are 
normalized to the range [0, 1] using a Sigmoid activation, denoted as 𝜎. 
These weights are then applied to the spatial dimension to emphasize 
the relevant regions. To address the significant inter-subject variability 
in EEG data, group normalization is used instead of the commonly ap-
plied batch normalization, ensuring more stable training and inference 
(Wu & He, 2018). Finally, spatial convolution is applied to integrate 
the features across all channels. The convolution kernel has a tempo-
ral size of 1 and a spatial size of 𝐶, reducing the spatial dimension to 
1. Depthwise convolution is applied, with each original feature channel 
processed by two convolutional kernels. This results in a final output 
𝑋𝑠 ∈ ℝ𝐹𝐶2×1×𝑇 , where 𝐹𝐶2 = 𝐹𝐶1 × 2.

2.1.3.  Feature channel attention
After integrating spatial information, the resulting multi-layer fea-

ture channels exhibit dynamic importance in classification tasks. There-
fore, a Squeeze-and-Excitation (SE) attention mechanism is also intro-
duced in the feature channel dimension, as follows: 
𝑋𝑐𝑎 = 𝜎(𝑊 ′

𝑒𝑥𝛿(𝑊
′
𝑠𝑞||

𝐹2
𝑓=1𝑎𝑣𝑔(𝑋𝑠))) ⋅𝑋𝑠 +𝑋𝑠 (2)

In contrast to the previous section, here average pooling is applied 
along the temporal dimension to obtain a feature channel vector of 
length 𝐹𝐶2. This vector is then compressed to one dimension using a 
weight matrix 𝑊 ′

𝑠𝑞 , followed by ReLU activation. Finally, it is expanded 
back to 𝐹𝐶2 dimensions using another weight matrix 𝑊 ′

𝑒𝑥. The result-
ing feature weights are used to reweight the input along the feature 
dimension. Residual connections are then employed to add the orig-
inal input to the weighted output, enhancing gradient flow and pre-
serving information. This channel-level attention mechanism also mod-
els interactions across feature channels, addressing the limitation of the 
depthwise convolution, which lacks cross-channel interactions. Follow-
ing this, group normalization is applied, and the data is passed through 
the GELU activation function (Hendrycks & Gimpel, 2016). Finally, 
dropout with a rate of 20% is applied to reduce overfitting to individual 
subjects in cross-subject tasks and improve the model’s generalization
performance.

2.1.4.  Temporal reduction and channel integration
This module further extracts temporal information and reduces di-

mensionality along the time axis using multi-layer convolutions, fol-
lowed by pointwise convolution for feature channel integration. First, 
two layers of depthwise temporal convolution with a window size of 
32 are applied. To reduce the computational complexity of subsequent 
temporal feature extraction, the convolution stride is set to 2, effectively 
reducing the temporal dimension. Next, pointwise convolution is em-
ployed to enable interaction and fusion across different feature chan-
nels. The output is then passed through group normalization, a GELU 
activation function, and a dropout layer with a rate of 20%. This pro-
cess produces the final Compressed Temporal Feature with dimensions 
𝐹𝐶2 × 1 × 𝑇 ′.

Fig. 4. The mechanism of cross-phase attention employed in our model. The 
features from the two phases are both processed through cross-phase attention 
to obtain their respective weighted features.

2.2.  Temporal alignment and fusion

The temporal features of the segmented EEG signals have been ex-
tracted using the Phased Encoder described in Section 2.1. The tem-
poral features from the two phases are first processed through a cross-
attention mechanism to determine their interaction weights, which are 
then applied with weighting and residual connections. The features are 
then aligned in high-dimensional space using Maximum Mean Discrep-
ancy (MMD) Loss to match their distributions. To preserve the tempo-
ral relationship between the two phases, the features are concatenated 
based on their time alignment. Finally, the concatenated features are 
processed through a Light temporal convolutional network (LightTCN) 
to extract global temporal features, followed by Binary Cross Entropy 
(BCE) loss to determine whether a target is detected.

2.2.1.  Cross-phase attention
To achieve better fusion of the features from the two phases, the 

cross-phase attention mechanism is first applied to weight the features. 
This enables the model to enhance the feature representation of the each 
phase by incorporating information from the other phase, thereby im-
proving the model’s discriminative ability while processing the signal 
from the current phase. The cross-phase attention mechanism in this 
model is illustrated in Fig. 4.

Here, the features to be weighted are denoted as 𝐹1, and the features 
used to extract the interaction attention are referred to as 𝐹2. For the 
input 𝐹1, two linear transformations are applied along the feature di-
mension to obtain the 𝐾 and 𝑉 . The input 𝐹2 passes through a linear 
layer to generate the 𝑄. The 𝑄 and the transpose of 𝐾 are multiplied 
through matrix multiplication to achieve information interaction and 
obtain attention scores. Then, the scores are scaled by dividing by 

√

𝐹
and 𝐹  represents the feature dimension. Softmax is then applied for nor-
malization to generate attention weights. The 𝑉  from 𝐹1 is then mul-
tiplied by the attention weights to obtain the cross-attention weights. 
Finally, 𝐹1 is weighted by the attention mechanism to produce the final
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interacted feature 𝐹1𝑎. Its calculation formula is as follows. 

𝐹1𝑎 =

(

Softmax

(

𝑊𝑞(𝐹1) ×𝑊𝑘(𝐹2)𝑇
√

𝐹

)

×𝑊𝑣(𝐹1)

)

◦𝐹1 (3)

𝑊𝑞(⋅),𝑊𝑘(⋅) and 𝑊𝑣(⋅) represent the linear mappings, and ◦ denotes 
the Hadamard product. Finally, the weighted features are added to the
original features through a residual connection, enhancing the feature 
representation and preventing the loss of the original features.

2.2.2.  Time-aligned concatenation
Previously, the EEG segments were divided into two phases and their 

independent features were extracted. However, certain EEG response 
features, such as attention, are global and span across the entire pro-
cess. Therefore, it is essential to extract temporal features across the 
entire phase. To ensure the causality of the temporal sequence, the fea-
tures from both phases are concatenated in a time-aligned manner, as 
expressed in the following equation. 

𝐹𝑇 ′′ (𝑡) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐹1𝑇 ′ (𝑡), 𝑡 ∈ [0, 13𝑇
′)

𝐹1𝑇 ′ (𝑡) + 𝐹2𝑇 ′

(

𝑡 − 1
3𝑇

′
)

, 𝑡 ∈ [ 13𝑇
′, 𝑇 ′)

𝐹2𝑇 ′

(

𝑡 − 1
3𝑇

′
)

, 𝑡 ∈ [𝑇 ′, 43𝑇
′]

(4)

The features 𝐹1𝑇 ′  and 𝐹2𝑇 ′  represent the EEG segments from the first 
0.75 second and the last 0.75 second, respectively. After feature extrac-
tion using the Phased Encoder, the time dimension is reduced to 𝑇 ′. 
For time alignment, the second phase feature starts at time zero, corre-
sponding to 𝑇 ′∕3 of the first phase feature. As a result, the last two-thirds 
of 𝐹1𝑇 ′  overlaps with the first two-thirds of 𝐹2𝑇 ′  in time, and these sec-
tions are element-wise added together. The first one-third of 𝐹1𝑇 ′  and the 
last one-third of 𝐹2𝑇 ′  are then concatenated at the beginning and end, 
respectively. After the time-aligned concatenation, the time dimension 
increases from 𝑇 ′ to 3𝑇 ′∕4, denoted as 𝑇 ′′. This time-aligned concate-
nation captures global temporal characteristics, enabling the model to 
better understand interactions between different phases and improving 
prediction performance.

2.2.3.  Light temporal convolutional network
To extract global temporal information from the concatenated fea-

tures, we use a Light temporal convolutional network (LightTCN). By 
leveraging causal convolutions and dilated convolutions, TCN effec-
tively captures long-range dependencies, addressing issues like gradi-
ent vanishing or explosion commonly encountered in Recurrent neural 
networks (RNNs) (Bai, Kolter, & Koltun, 2018). This makes TCN par-
ticularly suitable for extracting and integrating full-stage EEG tempo-
ral features. To make the model more lightweight and reduce overfit-
ting, we simplified the original TCN, retaining only its core components: 
causal dilated convolutions and 1D convolutional residual connections. 
The LightTCN module used in our model is shown in Fig. 5.

The input to the LightTCN is a concatenated feature matrix of size 
𝐹𝐶 × 𝑇 ′′ , which passes through three residual submodules. For each 
submodule, the input undergoes causal dilated convolutions. Causal 
convolutions ensure that the output at each time step depends only 
on the current and previous time steps, preventing information leak-
age from future time steps. Dilated convolutions increase the receptive 
field by inserting gaps in the convolution kernels, enhancing the abil-
ity to capture long-term temporal features. In this model, the dilation 
factor increases sequentially, with values of 1, 2, and 4 for the three 
submodules, respectively, expanding the temporal receptive field. After 
the causal dilated convolution, a ReLU activation function is applied to 
introduce non-linearity. Each submodule also includes a residual con-
nection, where pointwise convolutions are applied to the input, and the 
output is added to the result of the previous causal dilated convolution. 
This allows the model to learn information at different time scales more 
effectively. After passing through the three residual submodules, the 
output is aggregated along the time dimension using average pooling, 

Fig. 5. The mechanism of LightTCN employed in our model.

producing a global feature vector of length 𝐹𝐶, which is then passed 
through a fully connected layer for the final classification.

2.2.4.  Loss function
The loss function of this model consists of two components: the 

Maximum Mean Discrepancy (MMD) loss for aligning the features of 
the two phases and the Binary Cross Entropy (BCE) loss for the final 
classification. Before performing the time-aligned concatenation of the 
two-phase features, the MMD loss is applied to align the features in 
the high-dimensional space (Gretton, Borgwardt, Rasch, Schölkopf, & 
Smola, 2012). This alignment reduces the distributional differences be-
tween the two feature sets, ensuring a smoother concatenation process 
and enhancing the effectiveness of the resulting concatenated features. 
The MMD loss is calculated as follows: 
MMD = 𝔼𝑥,𝑥′∼

[

𝐾(𝑥, 𝑥′)
]

+ 𝔼𝑦,𝑦′∼
[

𝐾(𝑦, 𝑦′)
]

− 2𝔼𝑥∼ ,𝑦∼[𝐾(𝑥, 𝑦)]
(5)

Here,  and  represent the distributions of the features from the two 
phases. 𝑥 and 𝑥′ denote two independent feature samples from the first 
phase, while 𝑦 and 𝑦′ denote two independent feature samples from the 
second phase. 𝔼[⋅] denotes the expectation operator. 𝐾(⋅) is the kernel 
function used to map the features to a high-dimensional space; in this 
model, a Gaussian kernel is utilized for the mapping. The formula is as 
follows: 

𝐾(𝑢, 𝑣) = exp
(

−
‖𝑢 − 𝑣‖2

2𝜎2

)

(6)

𝜎 represents the bandwidth of the Gaussian kernel, which controls the 
rate at which similarity decays. To achieve classification, a BCE loss 
function is used to measure the difference between the model’s predicted 
probabilities and the actual labels. 
BCE = −

[

𝑦 log(�̂�) + (1 − 𝑦) log(1 − �̂�)
]

(7)

Here, 𝑦 represents the actual labels, and �̂� represents the predicted class 
probabilities. The final loss function is obtained by combining the MMD 
loss and BCE loss with a weighted sum, as follows: 
total = 𝜆MMD + BCE (8)
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In the formula, 𝜆 represents the weighting coefficient for the MMD loss. 
By combining the MMD loss and BCE loss with a weighted sum, the 
model simultaneously optimizes both phase feature alignment and clas-
sification performance during training, with 𝜆 adjusting their relative 
contributions.

3.  Experiments

3.1.  Experiment paradigm

Eight participants with normal or corrected-to-normal vision partici-
pated in the experiment. The experiments strictly followed the principles 
of the 2013 Declaration of Helsinki and were approved by the Research 
Ethics Committee of Beijing Institute of Technology with the ethical re-
view number: BIT-EC-H-2024150. To simulate a target detection task in 
low-quality UAV video footage, a UAV aerial surveillance scenario over 
the ocean was constructed. The UAV flew at a constant speed over the 
sea, capturing video at a resolution of 1920×1080. The targets to be 
detected were aircraft and ships, concealed among clouds, islands, and 
waves to replicate the environmental and weather challenges faced in 
real-world aerial footage.

A total of 240 20-second video clips were created, with half con-
taining targets. Each video included at most one target, which appeared 
randomly between 6 and 14 second into the clip, at varying locations. 
This randomness was designed to prevent participants from anticipating 
the timing and location of target appearances.

During the experiment, participants’ EEG and eye movement signals 
were recorded. EEG data were collected using a NeuSen W64 portable 
wireless amplifier with 64 electrodes, following the international 10–20 
system. The AFz position was used as the ground electrode, and the 
CPz position served as the reference electrode. The sampling frequency 
was set to 1,000 Hz. Eye movement data were recorded using a Tobii 
Pro-Fusion Screen eye tracker with a sampling rate of 60 Hz, tracking 
the x and y gaze coordinates on the display screen for each frame. For 
further details on the experimental setup and protocol, please refer to 
our previous work (Shi et al., 2024).

3.2.  Data preprocessing

3.2.1.  Initial data processing
In our experiment, baseline correction is first applied to the EEG 

signals, using the mean value of the 0–1 second interval as a reference to 
remove any offset. To reduce the impact of artifacts and noise on signal 
quality, we apply a bandpass filter with a 0.5-49Hz range. Next, the 
signal is downsampled from 1000Hz to 200Hz to reduce computational 
load. Next, a whole-brain common average reference is performed to 
minimize the influence of reference electrodes and enhance the quality 
of signal representation. These operations are carried out using EEGLab 
2024.0 (Brunner, Delorme, & Makeig, 2013).

3.2.2.  Processing with and without ICA
In non-invasive EEG experiments, some non-brain artifacts like eye 

movements and muscle activity often interfere with the signal, and dif-
ferent studies adopt various approaches to handle them. In neuroscience 
research, especially studies emphasizing rigor, independent component 
analysis (ICA) is frequently used to identify and remove artifact-related 
components (Lu et al., 2022b; Zhou et al., 2024). However, in real-
time BCI applications, the computational efficiency of ICA for artifact 
removal is relatively low, and the effectiveness of artifact removal is 
limited, especially when the subject’s training EEG segments are few, or 
in cross-subject experiments. Moreover, in target detection paradigms, 
some eye movement signals might be relevant to detecting targets, and 
retaining this information could potentially improve the model’s per-
formance. As a result, certain studies choose not to explicitly remove 
artifacts such as eye movements (Cui et al., 2023; Lu, Zhang, Chu, Liu, 
& Yu, 2022a).

To demonstrate the robustness of our proposed brain-inspired model, 
we conducted tests both with and without ICA artifact removal. This 
dual approach allowed us to assess the model’s decoding ability for pure 
brain signals and its robustness in handling mixed signals containing 
artifacts. This demonstrates the rigor of our method in neuroscience re-
search and its practical applicability in real-world scenarios.

For ICA processing, we applied ICA separately to each subject’s 
EEG data to decompose the signals into independent components. Fol-
lowing this decomposition, we utilized the ICLabel algorithm to auto-
matically classify these components based on their likelihood of rep-
resenting neural activity or artifacts (Pion-Tonachini, Kreutz-Delgado, 
& Makeig, 2019). Specifically, components labeled as “EYE” (ocular 
artifacts) and “MUSCLE” (electromyographic artifacts) with a confi-
dence score exceeding 90% were identified as artifact-related com-
ponents and subsequently removed. After excluding these compo-
nents, we performed an inverse ICA transformation to reconstruct the 
EEG signals, ensuring that only neural-related activity was retained 
while minimizing contamination from artifacts. This process resulted in 
artifact-corrected EEG signals that were cleaner and more suitable for
further analysis.

3.2.3.  Asynchronous EEG data alignment techniques
In low-quality video target detection, an asynchronous detection is-

sue arises due to an unpredictable delay between the target’s appear-
ance in the video and the participant’s detection (Song, Yan, Tong, Shu, 
& Zeng, 2020). This delay complicates the accurate segmentation of 
ERP data. To address this challenge, we previously proposed a method 
for aligning Fixation-Related Potentials (FRP) with eye-tracking signals, 
which demonstrated its effectiveness (Shi et al., 2024) and is also ap-
plied in the current experiment.

Specifically, we compared the eye-tracking coordinates with the tar-
get’s position, which was predetermined during the video creation pro-
cess. When the eye-tracking coordinates fall within the target’s area, 
the eye movement is classified as either a saccade or smooth pursuit 
using the velocity-threshold identification fixation classification algo-
rithm (Prabha & Bhargavi, 2020). A saccade indicates the participant 
is searching for the target, while smooth pursuit signals that the tar-
get has been detected and is being tracked (Williams, 2020). The mo-
ment when the eye-tracking coordinates align with the target’s position 
and the eye movement is classified as smooth pursuit is defined as the 
time of target detection. This time point is then used to segment the
FRP data.

3.2.4.  Temporal division of data segments
In each trial, the moment when the participant detects the target, 

determined based on eye movement, is set as the reference time (zero 
point). The EEG segment from [0,1] second is labeled as the FRP cor-
responding to target detection, while the [-4,-3] second segment is con-
sidered the segment for when the target was not detected. Across the 8 
participants, the total number of positive and negative samples is bal-
anced at 875 each.

3.3.  Cross-subject training and evaluation

To evaluate the model’s generalization ability and assess its reliabil-
ity in real-world applications while increasing data diversity, a Leave-
One-Out Cross-Validation (LOOCV) approach was adopted. Among the 
eight participants, one participant was designated as the test set in each 
round, while the remaining seven participants were divided into a train-
ing set (comprising six participants) and a validation set (comprising 
one participant), resulting in eight rounds of training and evaluation. 
For each training round, the model weights achieving the lowest Binary 
Cross Entropy loss on the validation set were selected for evaluation 
on the test set. Three metrics were used to evaluate the model: accu-
racy (Acc), true positive rate (TPR), and false positive rate (FPR). These 
metrics were selected to assess the overall performance of the model, 
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its ability to correctly classify target EEG signals, and its ability to cor-
rectly reject non-target EEG signals. The formulas for these metrics are 
as follows: 
Acc = 𝑇𝑃 𝑇𝑁 (9)+

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

TPR = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, FPR = 𝐹𝑃
𝐹𝑃 + 𝑇𝑁

(10)

where 𝑇𝑃  denotes the true positive instances, 𝑇𝑁 the true negative 
instances, 𝐹𝑃  the false positive instances, and 𝐹𝑁 the false negative 
instances.

During training, the Adam optimizer was employed with a learning 
rate of 1e-3, and the first and second moment estimates (𝛽1 and 𝛽2) 
were decayed with factors of 0.9 and 0.999, respectively. The batch 
size was set to 16. To mitigate the risk of overfitting in cross-subject 
training, the number of epochs per round was limited to 5. The weight 
coefficient of the MMD loss (𝜆) is set to 1.5. The model was implemented 
using PyTorch 1.13.1 and trained and evaluated on NVIDIA GeForce 
RTX 3050.

3.4.  Pseudo-online test

To further evaluate the model’s performance in real-world applica-
tions, we conducted a pseudo-online test. Using a sliding window of 1 
second with a step size of 0.1 seconds, each small window of data was 
processed through the model to obtain results. To reduce false positives 
caused by the non-stationarity of EEG signals and enhance the robust-
ness of the detection system, we applied a continuous hit strategy. This 
strategy requires that a signal segment is classified as having a target 
only if it is continuously detected as such above a certain threshold. In 
the experiment, we tested the proposed model with thresholds ranging 
from 3 to 7. In addition to recording accuracy, TPR, and FPR, we also 
compared the model’s detection latency - the time difference between 
when the model detects a target and when the subject actually sees the 
target. This was used to assess the model’s real-time performance in 
practical applications.

3.5.  Evaluation under cognitive distraction

To further evaluate the model’s performance under different condi-
tions, we conducted an additional experiment with two participants per-
forming video target detection under cognitive distraction. This aimed 
to assess the model’s effectiveness in real-world multitasking BCI appli-
cations and explore its performance limits.

To introduce cognitive distraction, we incorporated the n-back 
paradigm as a secondary cognitive task during the primary video target 
detection task. Originally proposed by MIT Agelab, the n-back paradigm 
imposes cognitive load by playing a sequence of digits and requiring par-
ticipants to recall previously presented digits (Mehler, Reimer, & Dusek, 
2011). This method is widely used in cognitive distraction studies. In our 
experiment, an audio sequence of random digits (0-9) was played start-
ing from the beginning of the video. Each digit was presented for 0.75 
seconds with a 2-second interval between digits. While performing the 
primary low-quality video target detection task, participants were also 
required to recall and verbally report the digit presented n steps earlier. 
Given the high visual and cognitive load of the primary task, we used a 
1-back condition to induce cognitive distraction.

For participants under cognitive distraction, 40% of the trials were 
designated as distraction trials, resulting in a total of 308 positive and 
negative samples across both participants. Due to the extended time 
gap between this experiment and the previous non-distraction experi-
ment, significant cross-session differences emerged from variations in 
signal acquisition equipment and environmental factors. To address 
this, model validation was conducted separately for each participant. 
Data preprocessing followed the same procedure as outlined in Sec-
tions 3.2.1 and Sections 3.2.3, with no ICA applied to simulate real-
world conditions. The training and evaluation employed five-fold cross-

validation, with the dataset split into training, validation, and test sets 
in a 3:1:1 ratio. The hyperparameter setup remained consistent with 
Section 3.3, but given the limited dataset, the number of epochs was set
to 30.

3.6.  Comparison with baseline models

In this study, we evaluated the proposed model against several base-
line models, both with and without ICA artifact removal. The baselines 
included the classical HDCA model from the RSVP paradigm (Gerson 
et al., 2006); temporal networks such as GRU (Cho et al., 2014) and 
LSTM (Wang, Jiang, Liu, Shang, & Zhang, 2018); convolution-based net-
works like DeepConvNet (Schirrmeister et al., 2017), EEGNet (Lawh-
ern et al., 2018), and EEG-Inception (Santamaria-Vazquez, Martinez-
Cagigal, Vaquerizo-Villar, & Hornero, 2020); as well as hybrid deep 
learning models with structures similar to the proposed model, though 
employing different fusion strategies - such as the graph-convolutional 
STGCN (Yu, Yin, & Zhu, 2017) and the time-frequency fusion trans-
former TFF-Former (Li et al., 2022b).

4.  Results and discussion

4.1.  Phased neural signature results

For video target detection tasks, the brain’s response is multi-phased, 
which served as inspiration for the development of the proposed model. 
Neuroscientific research highlights the involvement of three key brain 
regions in video target detection: the posterior parietal cortex, parts 
of the higher visual cortex (including areas V2, V3, and MT), and the 
prefrontal cortex. The posterior parietal cortex primarily generates the 
P300 waveform as a surprise response when identifying and detecting 
targets, which occurs predominantly in the early stages of target de-
tection (Pogarell et al., 2011). The V2, V3, and MT areas are mainly 
involved in spatial target perception and tracking. The V2 area focuses 
on primary visual feature detection and disparity processing, the V3 
area handles initial perception of dynamic objects (Kaas, 2003; Polich, 
2007), and the MT area processes advanced motion perception, includ-
ing speed, direction, and visual tracking (Born & Bradley, 2005; Jahn 
et al., 2012). These responses become more prominent during the later 
stages of target tracking. The prefrontal cortex, responsible for attention 
regulation, exhibits significant responses throughout all phases of target 
detection (Knight, 1994; Martinez-Trujillo, 2022).

To analyze the phased activity of these three brain regions us-
ing EEG signals, representative channels corresponding to each region 
were selected. Specifically, Pz represents the posterior parietal cortex, 
O2 represents the spatial visual cortex, and Fpz represents the pre-
frontal cortex. To reduce interference from artifacts such as eye move-
ments in EEG representations, we used independent component anal-
ysis (ICA) to remove artifact-related components. Both time-domain 
and frequency-domain analyses were conducted: the time-domain anal-
ysis utilized Fixation-Related Potentials (FRP), while the frequency-
domain analysis employed Fixation-Related Spectral Perturbation
(FRSP).

4.1.1.  FRP Results
The FRP analysis was conducted by averaging all trials across the 

eight participants. Fig. 6 shows the FRP of three representative channels: 
Pz, O2, and Fpz.

For the Pz channel, a prominent positive waveform is observed in the 
0-0.75 second interval, with a peak amplitude of approximately 3 𝜇𝑉 , 
reflecting a significant P300 waveform. This indicates that the brain re-
sponse during this phase is primarily driven by recognition and the sur-
prise associated with target appearance(Pogarell et al., 2011). Notably, 
due to the use of eye-tracking for FRP alignment, the P300 response 
appears slightly earlier than usual.
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Fig. 6. Time-domain responses provide the basis for EEG phase segmentation. FRP of Pz, O2, and Fpz channels. The blue line represents the EEG response when 
the participant detects the target, with the 0–1 second interval marked by yellow dashed lines (0 second indicating target appearance, and the 0–1 second window 
representing the main FRP period). The red dashed line represents the EEG response when no target is detected for comparison. The main P300 response at Pz occurs 
between 0-0.75 second, with the purple dashed line marking 0.75 second. The main negative wave response at O2 appears between 0.25-1 second, with the purple 
dashed line at 0.25 second.

For the O2 channel, a strong negative waveform is observed between 
0.25-1 second, with a peak amplitude of approximately 2.9 𝜇𝑉 . This 
negative waveform gradually recovers after 0.8 second. As O2 is located 
in the secondary visual cortex and dorsal stream regions associated with 
spatial attention, this response is likely driven by spatial tracking of the 
target after detection (Born & Bradley, 2005). In contrast, the symmet-
rical O1 channel on the left side does not show a significant negative 
waveform, which may be due to the brain’s right-hemisphere domi-
nance in spatial attention tasks (Hellige, 1996). This asymmetry further 
supports the conclusion that the negative waveform at O2 is primarily 
related to visual spatial attention.

For the Fpz channel, a significant negative waveform is observed 
throughout the 0–1 second interval, with a maximum drop of approxi-
mately 4.2 𝜇𝑉 , showing a trend of initial decline followed by recovery. 
As Fpz is located in the prefrontal cortex, this response is likely asso-
ciated with cognitive processes such as attention maintenance, target 
confirmation, and subsequent decision-making (Knight, 1994; Martinez-
Trujillo, 2022).

The FRP analysis indicates that the brain’s response after target 
detection can be divided into three distinct phases: the recognition 
phase (0-0.75 second) represented by Pz, the spatial tracking phase 
(0.25-1 second) represented by O2, and the attention phase spanning 
the entire period represented by Fpz. Inspired by these findings, we 
developed a phase-based EEG classification model for video target
detection.

4.1.2.  FRSP Results
To further validate the phase-based cognitive model of the brain in 

video target detection, we performed a frequency-domain analysis using 
FRSP for the three corresponding brain regions (Pascual-Marqui et al., 
2002), as shown in Fig. 7. Using the 4 seconds before fixation as the 
baseline, we applied a 3-cycle wavelet transform with a scaling factor 
of 0.5, a 200-time-point temporal window, and a frequency range of 

0.5–13 Hz. This range covers the delta (0.5-4 Hz), theta (4–8 Hz), and 
alpha (8–13 Hz) bands.

For the Pz channel, a strong response is observed in the 3–13 Hz 
range within 0.4 second of target detection, primarily in the theta and 
alpha bands. These bands are associated with top-down cognitive pro-
cessing in the brain (Min & Park, 2010), which, in this task, corresponds 
to target recognition. Additionally, a prolonged delta-band response is 
present in the 0-0.75 second interval, potentially reflecting the syn-
chronization and integration of multisensory inputs across brain regions 
(Hermer-Vazquez, Hermer-Vazquez, & Srinivasan, 2009).

For the O2 channel, changes in band power are primarily concen-
trated in the 0.5–8 Hz range, corresponding to the delta and theta bands. 
After target detection, particularly starting at 0.25 second, the power 
in the delta to theta bands gradually increases and remains at a high 
level. Between 0.8 and 1 second, the range of high-power frequency 
bands reaches its peak, with a baseline ratio of approximately 4dB. The 
low power observed during the early phase may reflect low-level visual 
feature extraction associated with the primary visual cortex (V1). The 
increased delta and theta band power in the mid-to-late phase likely cor-
responds to shifts and concentration of spatial attention (Jiang, Zhang, 
& Yu, 2021), as well as the dynamic integration and spatial tracking of 
the video target (Senoussi, Moreland, Busch, & Dugué, 2019).

For the Fpz channel, strong responses are observed throughout the 
1-second interval. From 0 to 0.4 second, significant power appears in 
the 5–11 Hz range (theta and low-frequency alpha bands). This likely 
reflects attention shifts triggered by target appearance, interactions be-
tween the prefrontal cortex and hippocampus (Roy, Svensson, Mazeh, & 
Kocsis, 2017), and attentional resource allocation involving regions such 
as the parietal cortex (Sauseng et al., 2005). From 0.4 to 1 second, higher 
power is observed in the 0.5-4 Hz and 11–13 Hz ranges (delta and high-
frequency alpha bands). The delta response may indicate long-range co-
ordination of the prefrontal cortex with other brain regions (Hermer-
Vazquez et al., 2009) and could relate to emotional reactions, such as 
task completion satisfaction (Cavanagh, 2015). The high-frequency al-

Fig. 7. Frequency-domain responses provide the basis for EEG phase segmentation. FRSP of the Pz, O2, and Fpz channels. The 0-second mark, indicating the 
moment the participant detected the target, is marked with a dashed line. Red and blue areas in the figure represent power levels higher and lower than the baseline, 
respectively.
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Fig. 8. Comparison of accuracy, true positive rate, and false positive rate for different models using data with ICA. Error bars show the 95% confidence interval 
based on the t-distribution over ten runs. * indicates 𝑝 < .05, and ** indicates 𝑝 < .01 in Wilcoxon signed-rank test.

pha response, associated with sustained attention (Clayton, Yeung, & 
Kadosh, 2015), aligns with spatial tracking activities observed in the 
O2 channel and may also support target-background suppression.

From the above FRSP analysis, in the frequency domain, Pz demon-
strates a primary response between 0-0.75 second, while O2 exhibits an 
increasing response starting from 0.25 second and sustaining thereafter. 
Although Fpz responses differ in frequency bands between the early and 
later phases, its overall response spans the entire 0–1 second interval. 
These findings offer additional neuroscientific support for the design of 
a phase-based EEG classification network.

4.2.  Test results

4.2.1.  Results with ICA
Fig. 8 presents a visual comparison of accuracy, true positive rate 

(TPR), and false positive rate (FPR) between our proposed model and 
baseline models under ICA processing. To ensure reliability, the re-
sults represent the average of ten independent runs. Our model demon-
strates superior performance across all metrics, achieving an accuracy 
of 89.04%, TPR of 88.26%, and FPR of 10.18%. Compared to the 
second-best performing model, EEG-Inception, our model shows im-
provements of 2.71%, 4.15%, and 1.27% in accuracy, TPR, and FPR, 
respectively. To validate the statistical significance of our results, we 
conducted Wilcoxon signed-rank tests on the ten-run results for each 
model. The tests revealed that our model’s performance metrics were 
significantly different (𝑝 < .01) from those of other models, except for 
the TPR comparison with HDCA, which showed significant but less pro-
nounced difference (𝑝 < .05). Notably, HDCA exhibited a substantially 
higher false alarm rate of 78.02%. Overall, our network achieves an 
optimal balance between TPR and FPR.

To demonstrate the lightweight design of our model, we compare 
its parameter count with that of other baseline models, as shown in 
Fig. 9. Our model has only 20,156 parameters, second only to EEGNet, 

but significantly outperforms it in performance. The second-best model, 
TFF-Former, has a massive parameter count exceeding 1.5 million, fur-
ther highlighting the advantage of our model in achieving high accuracy 
while maintaining a lightweight design.

4.2.2.  Results without ICA
Compared to Figs. 8, A.13 shows the classification results for each 

model using EEG data without ICA artifact removal. Our proposed model 
still achieves the best performance across accuracy, TPR, and FPR, with 
results of 96.32%, 95.65%, and 3.01%, respectively, surpassing the 
second-best model, EEG-Inception, by 2.25%, 2.16%, and 2.34%. After 
running each model ten times and performing the Wilcoxon signed-rank 
test, our model shows a highly significant difference compared to all 
other models (𝑝 < .01). The error bars indicate that our model exhibits 
the least variability, highlighting its robustness.

Notably, without ICA artifact removal, our model outperforms the 
results obtained with ICA by 7.41% in accuracy. To further demon-
strate that potential artifacts, such as eye movement signals, can en-
hance the model’s performance, we computed the difference between 
EEG signals with and without ICA processing to isolate the artifact sig-
nals. By inputting these artifacts into our model, the cross-subject accu-
racy reached 77.44%, indicating that the artifacts indeed contribute to 
classification. We hypothesize that this improvement may be due to a 
shift in the participant’s eye movement pattern from saccadic search-
ing to fixation upon detecting the target, which serves as additional 
evidence of target detection. Therefore, in real-world target detection 
applications, it may be beneficial to consider not performing ICA pro-
cessing, as potential artifacts could enhance model performance.

4.2.3.  Pseudo-online test results
Fig. 10 presents the pseudo-online test results, showing accuracy, 

TPR, FPR, and detection latency at consecutive hit thresholds ranging 

Fig. 9. Parameters comparison of different models.
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Fig. 10. The proposed model’s performance in the pseudo-online test based on different consecutive hit strategies, showing the variations in accuracy, hit rate, false 
positive rate, and detection delay. Error bars show the 95% confidence interval based on the t-distribution across different subjects.

from 3 to 7. As the threshold increases, which implies a higher require-
ment to confirm a target, the FPR decreases, but the TPR also decreases 
and the detection latency rises. Thus, an excessively high threshold may 
compromise system sensitivity and real-time performance. The figure 
indicates that thresholds of 4, 5, and 6 yield high accuracy (over 90%) 
and a good balance between TPR and FPR. In practical applications, 
a threshold of 4 is recommended for high sensitivity and low latency, 
while a threshold of 6 is preferable for lower false positives; a threshold 
of 5 provides a balanced trade-off.

4.2.4.  Results under cognitive distraction
Fig. A.14 presents the model accuracy results for two additional par-

ticipants under cognitive distraction. While the overall model perfor-
mance significantly declined due to the distraction, our model still out-
performed all others by a substantial margin. It achieved an average 
accuracy of 75.50% and 68.25% for the two participants, exceeding 
the second-best model by 18.83% and 9.53%, respectively. Most other 
models struggled, with accuracy hovering around 50%, indicating that 
many models failed to classify targets effectively under cognitive distrac-
tion. This highlights the considerable challenge introduced by cognitive 
distraction in video target detection decoding. To assess statistical sig-
nificance, a Wilcoxon signed-rank test was conducted over ten runs, con-
firming that our model demonstrated a significant difference (𝑝 < .05) 
compared to all other models. These results validate the robustness of 
our model in handling cognitive distraction, making it well-suited for 
real-world multitasking scenarios.

4.3.  Ablation study

4.3.1.  Ablation on phase lengths
To investigate the impact of different phase time divisions on model 

performance, we conducted an ablation study by varying the lengths 
of the pre-phase and post-phase while keeping the total time duration 
fixed at 1 second. Specifically, we tested various phase lengths from 
0.5 s to 0.8 s with a step size of 0.05 s, measured after 0 s and before 
1 s, respectively. To highlight the model’s practical applicability, all ab-
lation experiments in this paper were conducted using data without ICA 
artifact removal. The experimental results are shown in Table 1.

The ablation study indicates that when the pre-phase and post-
phase are each set to 0.75 second, the model achieves the best 

performance across all metrics, including accuracy, TPR, and FPR. 
This phase division aligns well with the temporal characteristics 
of the neural representations discussed in Section 4.1, further rein-
forcing the interpretability of the phase-based model in relation to
brain mechanisms.

4.3.2.  Ablation on phased encoder
To evaluate the effectiveness of each block in the proposed Phased 

Encoder, ablation experiments were conducted for each component. For 
the MTC block, the effect of multi-scale convolution was compared by 
replacing the three combined scales (kernels of sizes 32, 64, and 96) 
with individual convolutions of each scale separately while keeping the 
total number of kernels constant. For the SAI block and FCA block, the 
spatial attention and channel attention mechanisms were removed, re-
spectively. For the TRCI block, the pointwise convolution for feature 
channel interaction was excluded. The results of these ablation experi-
ments, compared to the full model, are summarized in Table 2.

For the MTC block, the use of multi-scale convolution improved ac-
curacy by 1.44%, 1.78%, and 1.3% compared to using only the 32, 64, 
and 96 kernel convolutions, respectively. Notably, compared to the 96-
kernel convolution, multi-scale convolution maintained high accuracy 
while reducing the number of parameters, demonstrating its effective-
ness. For the SAI and FCA blocks, spatial attention and channel atten-
tion improved accuracy by 1.92% and 2.62%, respectively, showing 
that leveraging attention mechanisms to focus on key brain regions and 
features relevant to target classification is an effective strategy. For the 
TRCI block, the pointwise convolution improved accuracy by 1.18%, 
highlighting the importance of cross-channel feature interactions. Over-
all, the four blocks of the Phased Encoder contributed improvements 

Table 1 
Results of ablation on different phase lengths.

 Phase Lengths (s)  Acc (%)  TPR (%)  FPR (%)
 0.5  95.08 ± 0.10  94.19 ± 0.17  4.02 ± 0.25
 0.55  94.31 ± 0.19  93.63 ± 0.60  5.02 ± 0.24
 0.6  94.75 ± 0.49  92.84 ± 0.85  3.35 ± 0.13
 0.65  95.28 ± 0.25  94.71 ± 0.26  4.14 ± 0.69
 0.7  95.73 ± 0.33  95.61 ± 0.58  4.15 ± 0.26
 0.75  96.32 ± 0.13  95.65 ± 0.29  3.01 ± 0.26
 0.8  94.71 ± 0.32  93.66 ± 0.13  4.24 ± 0.55
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Table 2 
Results of ablation on Phased Encoder.
 Block  Configuration  Acc (%)  TPR (%)  FPR (%)

 32 filters only  94.88 ± 0.13  95.68 ± 0.32  5.93 ± 0.52
 MTC  64 filters only  94.54 ± 0.16  92.91 ± 0.48  3.83 ± 0.17

 96 filters only  95.02 ± 0.25  94.34 ± 0.48  4.31 ± 0.14
 SAI  Without spatial attention  94.40 ± 0.22  93.91 ± 0.21  5.12 ± 0.24
 FCA  Without channel attention  94.70 ± 0.42  94.31 ± 0.44  4.91 ± 0.39
 TRCI  Without pointwise convolution  95.14 ± 0.29  93.78 ± 0.65  3.51 ± 0.67

 Full  96.32 ± 0.13  95.65 ± 0.29  3.01 ± 0.26
 EEGNet  93.23 ± 0.12  91.70 ± 0.29  5.23 ± 0.30

across accuracy, TPR, and FPR, validating the importance of each com-
ponent in the model.

To validate the necessity of the proposed Phase Encoder, we replaced 
it with the lightweight and widely used EEGNet as the phase feature 
extractor. The results show that our Phase Encoder signally outperforms 
EEGNet across all three metrics, with accuracy improving by 3.09%, 
demonstrating its superiority.

4.3.3.  Ablation on feature alignment and fusion
In the two-phase feature alignment process, we compared the ef-

fects of different loss functions on alignment. In addition to the previ-
ously mentioned MMD loss, we experimented with cosine similarity loss 
(Salton, Wong, & Yang, 1975), KL divergence loss (Kullback & Leibler, 
1951), DTW (Dynamic Time Warping) loss (Müller, 2007), and OT (Op-
timal Transport) loss (using the Wasserstein distance) (Peyré, Cuturi 
et al., 2019). Among these five losses, cosine similarity is commonly 
used for aligning feature directions, KL divergence for aligning proba-
bility distributions, DTW loss for finding the optimal alignment path via 
dynamic programming, and OT loss for computing the optimal match 
between distributions based on optimal transport theory. MMD loss is 
typically used for aligning different high-dimensional distributions. To 
balance the alignment loss with the final binary cross-entropy classifi-
cation loss during training, we applied a weighting factor 𝜆 to the align-
ment loss. We varied 𝜆 from 0.25 to 2 in increments of 0.25 and recorded 
the impact of each loss on model accuracy, as shown in Fig. 11.

MMD, OT, and DTW losses all yielded good alignment results, with 
similar accuracy levels, making them all viable in practice. However, 
at a weight of 1.5, MMD loss achieved a peak accuracy compared to 
the other two, likely because, unlike OT loss, MMD does not overly fo-
cus on matching individual sample points but instead emphasizes global 
features. Moreover, compared to DTW loss, MMD loss minimizes exces-
sive signal distortion, preserving the physiological consistency of the sig-

Fig. 11. The impact of different alignment loss functions and their weights in 
total loss function.

nal. Additionally, the high computational complexity of DTW loss poses 
challenges for model training. Cosine similarity loss performed slightly 
worse, with accuracy around 94%, possibly because EEG signals exhibit 
highly nonlinear variations and complex temporal dependencies, which 
cosine similarity-calculating only the angle between vectors-fails to cap-
ture effectively. Finally, KL divergence loss produced the poorest results, 
with accuracy fluctuating around 90%, likely due to the inherent asym-
metry between the features of the two phases, rendering KL divergence 
less applicable.

To validate the effectiveness of each component in the feature align-
ment and fusion module, we conducted ablation experiments on the 
cross-phase attention, time-aligned attention, and LightTCN modules. 
For the cross-phase attention, the module was removed entirely. For 
time-aligned concatenation, two alternatives were tested: direct addi-
tion and direct concatenation of features without temporal alignment. 
For LightTCN, we replaced it with commonly used temporal informa-
tion extraction networks, GRU (Cho et al., 2014) and LSTM (Wang et al., 
2018), with the same number of hidden layers (24) as LightTCN. The 
results are summarized in Table 3.

The cross-phase attention module improved accuracy by 1.38%, 
highlighting the importance of dynamically adjusting feature weights 
across phases. Time-aligned attention achieved 0.77% and 1.18% 
higher accuracy compared to direct addition and direct concatenation, 
respectively, demonstrating that temporal alignment effectively utilizes 
global temporal features and avoids semantic misalignment. To fur-
ther explore the influence of temporal dependency between the pre- 
and post-phases on the model, we conducted an ablation experiment 
by reversing the fusion order during alignment. The results showed a 
modest 0.63% drop in accuracy, indicating that the temporal sequence 
does contribute some dependency cues. However, this slight decline 
also underscores that our phase-based partitioning remains the primary 
driver of performance, as the pre- and post-phase features are effectively 
aligned in a shared high-dimensional space. LightTCN outperformed 
GRU and LSTM by 3.09% and 1.51%, respectively, likely due to the 
causal dilated convolutions in LightTCN, which effectively extract both 
local and global temporal features. Additionally, its low parameter count 
helps reduce the risk of overfitting.

4.4.  Visualization of feature alignment and fusion

To further demonstrate the effectiveness of feature alignment and 
fusion across the two phases, we visualized the features of an unseen 
participant (excluded from model training) using t-SNE. The visualiza-
tions include features before alignment, after alignment, and after fu-
sion, with each point representing the projection of a single data seg-
ment, as shown in Fig. 12.

In Fig. 12 (a), the features from the two phases form separate clus-
ters, with initial separation between the two classes within each cluster. 
In Fig. 12 (b), after alignment, the feature distributions of the two phases 
become more similar, and the two clusters are closer to each other, val-
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Table 3 
Results of ablation on feature alignment and fusion.
 Block  Configuration  Acc (%)  TPR (%)  FPR (%)
 Cross-phase attention  Without attention  94.94 ± 0.32  95.11 ± 0.30  5.22 ± 0.66

Time-aligned

concatenation

 Direct addition  95.55 ± 0.29  95.22 ± 0.53  4.11 ± 0.16
 Direct concatenation  95.14 ± 0.30  94.14 ± 0.17  3.86 ± 0.74
 Reversed alignment  95.69 ± 0.27  95.16 ± 0.06  3.78 ± 0.57

LightTCN  GRU  93.23 ± 0.21  93.79 ± 0.35  7.34 ± 0.75
 LSTM  94.81 ± 0.10  94.19 ± 0.36  4.56 ± 0.27
 Full  96.32 ± 0.13  95.65 ± 0.29  3.01 ± 0.26

Fig. 12. (a) t-SNE of pre-phase and post-phase features before alignment; (b) t-SNE of pre-phase and post-phase features after alignment; (c) t-SNE of features after 
alignment and fusion.

idating the effectiveness of the alignment process. In Fig. 12 (c), after 
cross-phase attention and temporal fusion with LightTCN, the combined 
features show greater separability, demonstrating the effectiveness of 
the feature fusion process.

4.5.  Limitations and real-world considerations

While the proposed model demonstrates strong robustness and gen-
eralizability across ICA-processed, raw, and cognitively distracted con-
ditions, several limitations remain to be addressed in future work. First, 
although ICA processing helps remove common artifacts such as eye 
blinks and muscle activity, it cannot eliminate all sources of noise. Real-
world signals often contain complex and unpredictable artifacts, includ-
ing those from motion, sweating, or electrical interference, which may 
degrade performance in practical deployment. Second, inter-session 
variability, referring to the changes in brain signals recorded from the 
same subject across different sessions or days, has not been evaluated. 
This variability is known to pose significant challenges for model gen-
eralization and should be addressed in future evaluations. Third, all ex-
periments were conducted using a single EEG recording device with a 
fixed number of channels. The model’s compatibility with other EEG 
systems that differ in hardware specifications, such as channel count, 
sampling rate, and electrode positions, remains to be validated. Future 
work will consider cross-device testing and adaptation to improve de-
ployment flexibility and robustness.

5.  Conclusion

In this paper, we propose a novel brain-inspired phased temporal 
encoding and alignment fusion algorithm for EEG-based classification 
in low-quality video target detection. By analyzing the FRP and FRSP 
of EEG signals in both time and frequency domains, we demonstrate 
that the brain’s response to target detection in low-quality videos can 
be roughly divided into three phases: early target recognition, later tar-

get spatial tracking, and global attention focus across the entire dura-
tion. Inspired by this brain mechanism, we introduce a model that splits 
EEG signals into early and later phases, which are processed separately 
by the proposed encoder. Using multi-scale convolution, spatial atten-
tion, channel attention, and feature integration, phase-specific features 
are extracted. These phase features are then integrated through cross-
phase attention, MMD loss, time-aligned concatenation, and LightTCN 
for global temporal feature extraction, resulting in full-phase features 
for classification.

To comprehensively evaluate the superiority and robustness of 
the proposed model, we conducted cross-subject experiments under
multiple settings, including ICA-processed and raw data, represent-
ing clean and real-world brain signals. The model achieved accura-
cies of 89.04% with ICA and 96.32% without ICA, both significantly
outperforming baseline methods. Under cognitive distraction, the model 
maintained strong performance with accuracies of 75.50% and 68.25% 
on two independent subjects. In pseudo-online experiments, it achieved 
92.40% accuracy, further confirming its real-world potential. Abla-
tion studies confirmed the contributions of the phase-based model,
phased encoder, and phase feature alignment and fusion. Feature visu-
alization using t-SNE further illustrated the clear discriminative power 
of the aligned features.

Beyond statistical improvements, the model offers practical advan-
tages essential for real-world brain-computer interface applications. Its 
robustness across preprocessing pipelines, resilience under distraction, 
and reliable pseudo-online performance reflect strong generalizability. 
The lightweight architecture with fewer parameters also enables effi-
cient deployment on portable or embedded systems. Together, these 
strengths highlight the model’s potential to advance the development 
of more reliable and user-friendly neural interfaces.

This work is the first to combine the brain mechanisms of low-quality 
target detection with EEG-based detection algorithms, offering novel in-
sights for the application of BCI technology in complex scenarios. By 
simulating the brain’s phased information processing mechanism, we 
propose a brain-inspired algorithm that integrates brain science with ar-
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tificial intelligence and other fields, advancing AI towards more human-
centric and biologically informed approaches.
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Appendix A.  Results of different models under various 
experiments

Fig. A.13. Comparison of accuracy, true positive rate, and false positive rate for different models using data without ICA. Error bars show the 95% confidence 
interval based on the t-distribution over ten runs. ** indicates 𝑝 < .01 in Wilcoxon signed-rank test.

Fig. A.14. Comparison of accuracy of different models for two cognitively distracted subjects. Error bars show the 95% confidence interval based on the t-distribution 
over ten runs. * indicates 𝑝 < .05, and ** indicates 𝑝 < .01 in Wilcoxon signed-rank test.

Expert Systems With Applications 288 (2025) 128189 

13 

https://doi.org/10.13039/501100012166


D. Wang et al.

References

Alawad, W., Halima, N. B., & Aziz, L. (2023). An unmanned aerial vehicle (UAV) system 
for disaster and crisis management in smart cities. Electronics, 12(4), 1051. 

Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional 
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271.

Bar, M. (2007). The proactive brain: Using analogies and associations to generate predic-
tions. Trends in Cognitive Sciences, 11(7), 280–289. 

Barachant, A., & Congedo, M. (2014). A plug&play p300 BCI using information geometry. 
arXiv preprint arXiv:1409.0107.

Born, R. T., & Bradley, D. C. (2005). Structure and function of visual area MT. Annual 
Review of Neuroscience, 28(1), 157–189. 

Brunner, C., Delorme, A., & Makeig, S. (2013). Eeglab–an open source matlab toolbox for 
electrophysiological research. Biomedical Engineering/Biomedizinische Technik, 58(SI-1-
Track-G), 000010151520134182. 

Cavanagh, J. F. (2015). Cortical delta activity reflects reward prediction error and related 
behavioral adjustments, but at different times. NeuroImage, 110, 205–216. 

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & 
Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for 
statistical machine translation. arXiv preprint arXiv:1406.1078.

Choi, S. H. (2024). Spiking neural networks for biomedical signal analysis. Biomedical 
Engineering Letters, 14(5), 955–966. 

Clayton, M. S., Yeung, N., & Kadosh, R. C. (2015). The roles of cortical oscillations in 
sustained attention. Trends in Cognitive Sciences, 19(4), 188–195. 

Cui, Y., Xie, S., Xie, X., Zheng, D., Tang, H., Duan, K., Chen, X., & Jiang, Y. (2023). Lder: 
A classification framework based on erp enhancement in rsvp task. Journal of Neural 
Engineering, 20(3), 036029. 

Fang, W., Zhang, G., Zheng, Y., & Chen, Y. (2023). Multi-task learning for UAV aerial 
object detection in foggy weather condition. Remote Sensing, 15(18), 4617. 

Feng, D., Harakeh, A., Waslander, S. L., & Dietmayer, K. (2021). A review and comparative 
study on probabilistic object detection in autonomous driving. IEEE Transactions on 
Intelligent Transportation Systems, 23(8), 9961–9980. 

Garvanov, I., Garvanova, M., Ivanov, V., Chikurtev, D., & Chikurteva, A. (2024). Drone 
detection based on image processing. In 2024 23rd international symposium on electrical 
apparatus and technologies (SIELA) (pp. 1–5). IEEE. 

Geirhos, R., Temme, C. R. M., Rauber, J., Schütt, H. H., Bethge, M., & Wichmann, F. A. 
(2018). Generalisation in humans and deep neural networks. Advances in Neural Infor-
mation Processing Systems, 31. 

Gerson, A. D., Parra, L. C., & Sajda, P. (2006). Cortically coupled computer vision for rapid 
image search. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), 
174–179. 

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. (2012). A kernel 
two-sample test. The Journal of Machine Learning Research, 13(1), 723–773. 

Hellige, J. (1996). Hemispheric asymmetry for visual information processing. Acta Neuro-
biologiae Experimentalis, 56(1), 485–497. 

Hendrycks, D., & Gimpel, K. (2016). Gaussian error linear units (gelus). arXiv preprint 
arXiv:1606.08415.

Hermer-Vazquez, R., Hermer-Vazquez, L., & Srinivasan, S. (2009). A putatively novel form 
of spontaneous coordination in neural activity. Brain Research Bulletin, 79(1), 6–14. 

Hu, J., Shen, L., & Sun, G. (2018). Squeeze-and-excitation networks. In Proceedings of the 
IEEE conference on computer vision and pattern recognition (pp. 7132–7141). 

Jahn, G., Wendt, J., Lotze, M., Papenmeier, F., & Huff, M. (2012). Brain activation during 
spatial updating and attentive tracking of moving targets. Brain and Cognition, 78(2), 
105–113. 

Jiang, Y., Zhang, H., & Yu, S. (2021). Changes in delta and theta oscillations in the brain 
indicate dynamic switching of attention between internal and external processing. In 
4th International conference on biometric engineering and applications (pp. 25–31). 

Kaas, J. H. (2003). Early visual areas: V1, v2, v3, DM, DL, and MT. In The primate visual 
system (pp. 138–158). CRC Press. 

Knight, R. T. (1994). Attention regulation and human prefrontal cortex. In Motor and 
cognitive functions of the prefrontal cortex (pp. 160–173). Springer. 

Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Math-
ematical Statistics, 22(1), 79–86. 

Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, 
B. J. (2018). Eegnet: A compact convolutional neural network for eeg-based brain–
computer interfaces. Journal of Neural Engineering, 15(5), 056013. 

Li, D., Zhang, Z., Wang, B., Yang, C., & Deng, L. (2022a). Detection method of timber 
defects based on target detection algorithm. Measurement, 203, 111937. 

Li, X., Wei, W., Qiu, S., & He, H. (2022b). Tff-former: Temporal-frequency fusion trans-
former for zero-training decoding of two bci tasks. In Proceedings of the 30th ACM 
International conference on multimedia (pp. 51–59). 

Liu, S., Wang, S., Shi, W., Liu, H., Li, Z., & Mao, T. (2019). Vehicle tracking by detection 
in UAV aerial video. Science China. Information Sciences, 62(2), 24101. 

Lu, G., Zhang, Y., Chu, X., Liu, Y., & Yu, Y. (2022a). Combining multi-scale convolutional 
neural network and transformers for EEG-based RSVP detection. In 2022 37th youth 
academic annual conference of chinese association of automation (YAC) (pp. 426–431). 
IEEE. 

Lu, R., Zeng, Y., Zhang, R., Yan, B., & Tong, L. (2022b). Sast-gcn: Segmentation adap-
tive spatial temporal-graph convolutional network for p3-based video target detection. 
Frontiers in Neuroscience, 16, 913027. 

Lyu, X., Li, X., Dang, D., Dou, H., Wang, K., & Lou, A. (2022). Unmanned aerial vehicle 
(UAV) remote sensing in grassland ecosystem monitoring: A systematic review. Remote 
Sensing, 14(5), 1096. 

Mansfield, C. E. (2024). Decoding the recognition of occluded objects in the human brain. 
Ph.D. thesis. University of East Anglia. 

Martinez-Trujillo, J. (2022). Visual attention in the prefrontal cortex. Annual Review of 
Vision Science, 8(1), 407–425. 

Mehler, B., Reimer, B., & Dusek, J. A. (2011). Mit agelab delayed digit recall task (n-back). 
Cambridge, MA: Massachusetts Institute of Technology, 17, 33. 

Min, B.-K., & Park, H.-J. (2010). Task-related modulation of anterior theta and posterior 
alpha EEG reflects top-down preparation. BMC Neuroscience, 11, 1–8. 

Müller, M. (2007). Dynamic time warping. Information retrieval for music and motion
(pp. 69–84). 

Nguyen, T., Khosravi, A., Creighton, D., & Nahavandi, S. (2015). Eeg signal classification 
for bci applications by wavelets and interval type-2 fuzzy logic systems. Expert Systems 
with Applications, 42(9), 4370–4380. 

Pascual-Marqui, R. D. et al. (2002). Standardized low-resolution brain electromagnetic 
tomography (sLORETA): Technical details. Methods and Findings in Experimental and 
Clinical Pharmacology, 24(Suppl D), 5–12. 

Peyré, G., Cuturi, M. et al. (2019). Computational optimal transport: With applications to 
data science. Foundations and Trends® in Machine Learning, 11(5–6), 355–607. 

Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). Iclabel: An automated elec-
troencephalographic independent component classifier, dataset, and website. NeuroIm-
age, 198, 181–197. 

Pogarell, O., Padberg, F., Karch, S., Segmiller, F., Juckel, G., Mulert, C., Hegerl, U., Tatsch, 
K., & Koch, W. (2011). Dopaminergic mechanisms of target detection-p300 event 
related potential and striatal dopamine. Psychiatry Research: Neuroimaging, 194(3), 
212–218. 

Polich, J. (2007). Updating p300: An integrative theory of p3a and p3b. Clinical neuro-
physiology, 118(10), 2128–2148. 

Pourpanah, F., Abdar, M., Luo, Y., Zhou, X., Wang, R., Lim, C. P., Wang, X.-Z., & Wu, 
Q. M. J. (2022). A review of generalized zero-shot learning methods. IEEE Transactions 
on Pattern Analysis and Machine Intelligence, 45(4), 4051–4070. 

Prabha, A. J., & Bhargavi, R. (2020). Predictive model for dyslexia from fixations and 
saccadic eye movement events. Computer Methods and Programs in Biomedicine, 195, 
105538. 

Rahmani, M., Mohajelin, F., Khaleghi, N., Sheykhivand, S., & Danishvar, S. (2024). An 
automatic lie detection model using EEG signals based on the combination of type 2 
fuzzy sets and deep graph convolutional networks. Sensors, 24(11), 3598. 

Rivet, B., Souloumiac, A., Attina, V., & Gibert, G. (2009). XDAWN algorithm to en-
hance evoked potentials: application to brain–computer interface. IEEE Transactions 
on Biomedical Engineering, 56(8), 2035–2043. 

Roy, A., Svensson, F. P., Mazeh, A., & Kocsis, B. (2017). Prefrontal-hippocampal coupling 
by theta rhythm and by 2–5 hz oscillation in the delta band: The role of the nucleus 
reuniens of the thalamus. Brain Structure and Function, 222(6), 2819–2830. 

Sajda, P., Gerson, A., & Parra, L. (2003). High-throughput image search via single-trial 
event detection in a rapid serial visual presentation task. In First International IEEE 
EMBS conference on neural engineering, 2003. conference proceedings. (pp. 7–10). IEEE. 

Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing. 
Communications of the ACM, 18(11), 613–620. 

Santamaria-Vazquez, E., Martinez-Cagigal, V., Vaquerizo-Villar, F., & Hornero, R. (2020). 
Eeg-inception: A novel deep convolutional neural network for assistive erp-based 
brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engi-
neering, 28(12), 2773–2782. 

Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., Gru-
ber, W. R., & Birbaumer, N. (2005). A shift of visual spatial attention is selectively 
associated with human EEG alpha activity. European journal of neuroscience, 22(11), 
2917–2926. 

Schirrmeister, R. T., Springenberg, J. T., Fiederer, L. D. J., Glasstetter, M., Eggensperger, 
K., Tangermann, M., Hutter, F., Burgard, W., & Ball, T. (2017). Deep learning with con-
volutional neural networks for EEG decoding and visualization. Human Brain Mapping, 
38(11), 5391–5420. 

Senoussi, M., Moreland, J. C., Busch, N. A., & Dugué, L. (2019). Attention explores space 
periodically at the theta frequency. Journal of Vision, 19(5), 22–22. 

Shi, J., Bi, L., Xu, X., Feleke, A. G., & Fei, W. (2024). Low-quality video target detection 
based on EEG signal using eye movement alignment. Cyborg and Bionic Systems, 5, 
0121. 

Song, X., Yan, B., Tong, L., Shu, J., & Zeng, Y. (2020). Asynchronous video target detection 
based on single-trial EEG signals. IEEE Transactions on Neural Systems and Rehabilitation 
Engineering, 28(9), 1931–1943. 

Song, X., Zeng, Y., Tong, L., Shu, J., Li, H., & Yan, B. (2021). Neural mechanism for dy-
namic distractor processing during video target detection: Insights from time-varying 
networks in the cerebral cortex. Brain Research, 1765, 147502. 

Struye, J., & Latré, S. (2020). Hierarchical temporal memory and recurrent neural net-
works for time series prediction: An empirical validation and reduction to multilayer 
perceptrons. Neurocomputing, 396, 291–301. 

Uleru, G.-I., Hulea, M., & Manta, V.-I. (2022). Using hebbian learning for training spiking 
neural networks to control fingers of robotic hands. International Journal of Humanoid 
Robotics, 19(06), 2250024. 

Wang, J., Bi, L., Fei, W., Xu, X., Liu, A., Mo, L., & Feleke, A. G. (2024). Neural correlate 
and movement decoding of simultaneous-and-sequential bimanual movements using 
EEG signals. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 

Wang, P., Jiang, A., Liu, X., Shang, J., & Zhang, L. (2018). Lstm-based eeg classification in 
motor imagery tasks. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 
26(11), 2086–2095. 

Wang, R., Liu, Y., Shi, J., Peng, B., Fei, W., & Bi, L. (2022). Sound target detection under 
noisy environment using brain-computer interface. IEEE Transactions on Neural Systems 
and Rehabilitation Engineering, 31, 229–237. 

Wang, X., Yao, F., Li, A., Xu, Z., Ding, L., Yang, X., Zhong, G., & Wang, S. (2023). Dronenet: 
Rescue drone-view object detection. Drones, 7(7), 441. 

Expert Systems With Applications 288 (2025) 128189 

14 

http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0001
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0001
http://arxiv.org/abs/1803.01271
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0002
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0002
http://arxiv.org/abs/1409.0107
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0003
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0003
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0004
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0004
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0004
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0005
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0005
http://arxiv.org/abs/1406.1078
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0006
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0006
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0007
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0007
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0008
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0008
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0008
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0009
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0009
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0010
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0010
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0010
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0011
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0011
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0011
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0012
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0012
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0012
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0013
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0013
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0013
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0014
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0014
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0015
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0015
http://arxiv.org/abs/1606.08415
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0016
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0016
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0017
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0017
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0018
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0018
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0018
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0019
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0019
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0019
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0020
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0020
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0021
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0021
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0022
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0022
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0023
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0023
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0023
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0024
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0024
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0025
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0025
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0025
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0026
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0026
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0027
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0027
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0027
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0027
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0028
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0028
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0028
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0029
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0029
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0029
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0030
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0030
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0031
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0031
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0032
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0032
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0033
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0033
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0034
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0034
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0035
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0035
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0035
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0036
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0036
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0036
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0037
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0037
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0038
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0038
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0038
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0039
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0039
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0039
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0039
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0040
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0040
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0041
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0041
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0041
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0042
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0042
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0042
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0043
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0043
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0043
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0044
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0044
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0044
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0045
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0045
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0045
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0046
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0046
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0046
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0047
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0047
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0048
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0048
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0048
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0048
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0049
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0049
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0049
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0049
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0050
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0050
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0050
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0050
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0051
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0051
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0052
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0052
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0052
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0053
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0053
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0053
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0054
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0054
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0054
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0055
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0055
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0055
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0056
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0056
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0056
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0057
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0057
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0057
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0058
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0058
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0058
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0059
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0059
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0059
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0060
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0060


D. Wang et al.

Wendling, F., Koksal-Ersoz, E., Al-Harrach, M., Yochum, M., Merlet, I., Ruffini, G., Bar-
tolomei, F., & Benquet, P. (2024). Multiscale neuro-inspired models for interpretation 
of EEG signals in patients with epilepsy. Clinical Neurophysiology, 161, 198–210. 

Williams, C. C. (2020). Looking for your keys: The interaction of attention, memory, and 
eye movements in visual search. In Psychology of learning and motivation (pp. 195–229). 
Elsevier (vol. 73). 

Wu, Y., & He, K. (2018). Group normalization. In Proceedings of the European conference 
on computer vision (ECCV) (pp. 3–19). 

Xia, X., Guo, Y., Wang, Y., Yang, Y., Shi, Y., & Men, H. (2024). Advancing cross-subject 
olfactory EEG recognition: a novel framework for collaborative multimodal learning 
between human-machine. Expert Systems with Applications, 250, 123972. 

Yu, B., Yin, H., & Zhu, Z. (2017). Spatio-temporal graph convolutional networks: A deep 
learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875.

Yuan, Z., Zhou, Q., Wang, B., Zhang, Q., Yang, Y., Zhao, Y., Guo, Y., Zhou, J., & Wang, 
C. (2024). Psaeegnet: Pyramid squeeze attention mechanism-based cnn for single-trial 
eeg classification in rsvp task. Frontiers in Human Neuroscience, 18, 1385360. 

Yun, W. J., Park, S., Kim, J., Shin, M., Jung, S., Mohaisen, D. A., & Kim, J.-H. (2022). 
Cooperative multiagent deep reinforcement learning for reliable surveillance via 
autonomous multi-UAV control. IEEE Transactions on Industrial Informatics, 18(10), 
7086–7096. 

Zang, B., Lin, Y., Liu, Z., & Gao, X. (2021). A deep learning method for single-trial EEG 
classification in RSVP task based on spatiotemporal features of ERPs. Journal of Neural 
Engineering, 18(4), 0460c8. 

Zhou, Q., Zhang, Q., Wang, B., Yang, Y., Yuan, Z., Li, S., Zhao, Y., Zhu, Y., Gao, Z., Zhou, 
J. et al. (2024). Rsvp-based bci for inconspicuous targets: Detection, localization, and 
modulation of attention. Journal of Neural Engineering, 21(4), 046046. 

Expert Systems With Applications 288 (2025) 128189 

15 

http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0061
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0061
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0061
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0062
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0062
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0062
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0063
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0063
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0064
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0064
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0064
http://arxiv.org/abs/1709.04875
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0065
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0065
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0065
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0066
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0066
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0066
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0066
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0067
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0067
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0067
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0068
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0068
http://refhub.elsevier.com/S0957-4174(25)01809-3/sbref0068

	Brain-inspired deep learning model for EEG-based low-quality video target detection with phased encoding and aligned fusion 
	1 Introduction
	2 Method
	2.1 Phased encoder
	2.1.1 Multi-scale temporal convolution
	2.1.2 Spatial attention and integration
	2.1.3 Feature channel attention
	2.1.4 Temporal reduction and channel integration

	2.2 Temporal alignment and fusion
	2.2.1 Cross-phase attention
	2.2.2 Time-aligned concatenation
	2.2.3 Light temporal convolutional network
	2.2.4 Loss function


	3 Experiments
	3.1 Experiment paradigm
	3.2 Data preprocessing
	3.2.1 Initial data processing
	3.2.2 Processing with and without ICA
	3.2.3 Asynchronous EEG data alignment techniques
	3.2.4 Temporal division of data segments

	3.3 Cross-subject training and evaluation
	3.4 Pseudo-online test
	3.5 Evaluation under cognitive distraction
	3.6 Comparison with baseline models

	4 Results and discussion
	4.1 Phased neural signature results
	4.1.1 FRP Results
	4.1.2 FRSP Results

	4.2 Test results
	4.2.1 Results with ICA
	4.2.2 Results without ICA
	4.2.3 Pseudo-online test results
	4.2.4 Results under cognitive distraction

	4.3 Ablation study
	4.3.1 Ablation on phase lengths
	4.3.2 Ablation on phased encoder
	4.3.3 Ablation on feature alignment and fusion

	4.4 Visualization of feature alignment and fusion
	4.5 Limitations and real-world considerations

	5 Conclusion
	A Results of different models under various experiments


